

ASPHALT COMPACTION OPERATIONS – EFFECTS ON DURABILITY

Rebecca McDaniel North Central Superpave Center

TRB AFH60 Committee Meeting January 13, 2014

PRIMARY CAUSES OF POOR DURABILITY

Cause

Result

Low BinderContent

Raveling

Binder Aging

- Brittleness
- Cracking
- Early asphalt hardening
- High VoidsCracking
 - Content Disintegration/ravelling

Understand the causes so we can prevent the results.

RAVELING

- Insufficient binder
- Insufficient fine aggregate
- Lack of compaction
- High dust to binder ratio
- Water sensitivity
- o "Dirty" aggregates

- Mix design
- Changes during production
- Inadequate compaction

CRACKING

Fatigue

- Pavement thickness
- Low binder content
- Moisture sensitivity
- Stiff binder

Thermal

- Low binder content
- Stiff binder
- High dust to asphalt

- Pavement design
- Mix design/material selection
- Changes during production
- Inadequate compaction

BINDER AGING

- Oxygen reacts with binder
- Leads to hardening of binder
- Increases raveling and cracking
- Material Selection
- Overheating
- Poor compaction

Air Void Content Too High

IMPACT OF HIGH VOIDS

Raveling increases as air content increases.

Service life reduced about 10% for each 1% air voids over 7%!

Figure 2-34. Air Void Content Versus Extent of Ravelling (after Kandhal, 43)

NCAT STUDY (Report 03-02, Mallick et al.)

FACTORS AFFECTING COMPACTION

- Mix Properties
 - Aggregate gradation, shape and texture
 - Binder stiffness and content
 - Mix temperature
- Environmental Conditions
 - Air and surface temperature
 - Wind
 - Humidity

FACTORS AFFECTING COMPACTION

- LayerThickness
- oJoints
- Segregation
- Equipment
 - Enough
 - Speed
 - Type

LAYER THICKNESS

- Achievable density related to thickness relative to NMAS (NCHRP 531)
- Recommended thickness \geq 3 times NMAS for fine graded and \geq 4 times NMAS for coarse graded mixes and SMA

HOW TO DECREASE VOIDS AND INCREASE DURABILITY?

- Increase field density while maintaining effective binder content and VMA
- Mixes need to be more compactable

CONCEPT

- Make changes in mix design to make mixes easier to compact in field
- Design and compact mixes to 5% air
- French mixes have no traffic densification

CHANGING GYRATION LEVELS

- With same aggregate stockpiles
 - Same crushed faces, FAA and hardness
- Decreasing gyrations →
 - Change in gradation
 - Lower mix stiffness in lab
 - Easier compaction in field
- Need equal or better final mechanical properties to prevent traffic densification

LAB FINDINGS

- With changes in gradation, mixes can be designed at 5% air voids in the lab
- Re-designed mixes at 5% air can have higher stiffnesses and higher rut resistance than mixes designed at 4% air and compacted to 7% air
- Concept looks promising
- Field trial recommended and identified

FIELD TRIAL

- Mill and overlay on state road (SR13)
- o 9.5 mm surface for 10−30 million ESALs
 - Steel slag and limestone coarse agg
 - Manufactured and natural sands
 - 7% RAS
- N100 mix re-designed at 30 gyrations
 - Changed during production to N50

SR13 MIX DESIGNS

SR13 Mix Design FN Test

Original (N100) mix – FN = 841N30 mix – FN = 1181

- Bigger is better, more rut resistant
- Air voids ~1% low on both mixes
- Statistically significant difference

Things look promising

ESTIMATED PROPERTIES AT N30

Property	Sublot 1	Sublot 2	Sublot 3	Average
Air Voids, %	5.1	4.8	4.7	4.9
VMA, %	17.2	16.6	17.2	17.0

Based on field data and Bailey method calculations.

FIELD COMPACTION

Sublot	Density 1	Density 2	Average
1	92.30	94.53	93.42
2	93.59	94.68	94.13
3	96.29	96.69	96.49

Overall Average Core Density = 94.7%

Target 95%

No change in compaction equipment nor patterns!

PLANT PRODUCED MIX RESULTS

- N100 was stiffer than N50
 - Statistically significant difference
 - Both mixes were reheated
- N100 had higher flow number and lower strain than N50
- Contrary to lab and mix design results
 - Does not necessarily mean N50 will rut
 - Time will tell...

CONCLUSIONS

- Mixes designed at 5% air in lab can be compacted to 5% in the field with minimal to no changes in compaction process
- Results of testing reheated plant produced mixes did not agree with lab research nor mix design
- Field trial will show if rutting develops

- Potential 2-3 years of increased service life
- Potential savings of \$20–30 million a year
 - Based on \$300 million HMA rehab budget and that 50% of the HMA pavements reaching end of life do so because of durability problems

REBECCA McDaniel
North Central
Superpave Center
RSMCDani@purdue.edu
765/463-2317 ext 226

Thanks to Heritage Research Group, Gerry Huber, Dudley Bonte, Doug Hanson for photos and ideas.